课题2:集合间的基本关系及运算
一、复习回顾:
1.提问:集合的两种表示方法? 如何用适当的方法表示下列集合?
(1)10以内3的倍数;
(2)1000以内3的倍数
2.用适当的符号填空: 0 N; Q; -1.5 R。
思考1:类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?
二、新课教学
比较下面几个例子,试发现两个集合之间的关系:
(1),;
(2),;
(3),
1. 子集的定义:
对于两个集合A,B,如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集(subset)。 记作:
读作:A包含于(is contained in)B,或B包含(contains)A
当集合A不包含于集合B时,记作
用Venn图表示两个集合间的“包含”关系: 如:(1)中
2. 集合相等定义:
如果A是集合B的子集,且集合B是集合A的子集,则集合A与集合B中的元素是一样的,因此集合A与集合B相等,即若,则。
如(3)中的两集合。
3. 真子集定义:
若集合,但存在元素,则称集合A是集合B的真子集(proper subset)。记作:
A B(或B A)
读作:A真包含于B(或B真包含A)
如:(1)和(2)中A B,C D;
4. 空集定义:
不含有任何元素的集合称为空集(empty set),记作:。
用适当的符号填空:
; 0 ; ;
思考2:课本P7 的思考题
5. 几个重要的结论:
(1) 空集是任何集合的子集;
(2) 空集是任何非空集合的真子集;
(3) 任何一个集合是它本身的子集;
(4) 对于集合A,B,C,如果,且,那么。
说明:
1. 注意集合与元素是“属于”“不属于”的关系,集合与集合是“包含于”“不包含于”的关系;
2. 在分析有关集合问题时,要注意空集的地位。
课堂练习
1.填空:
(1). 2 N; N; A;
(2).已知集合A={x|x-3x+2=0},B={1,2},C={x|x<8,x∈N},则
A B; A C; {2} C; 2 C
(3) 0 {0}; 0 Φ; Φ {x|x+1=0,x∈R}
{0} {x|x<3且x>5}; {x|x>6} {x|x<-2或x>5} ; {x|x>-3} {x>2}
2.写出集合的所有子集,并指出哪些是它的真子集。
3.课本P7练习1,2,3
4.已知A={1,2,3},S={1,2,3,4,5},则A S;{x|x∈S且xA}= 。
5.若集合 B A,求m的值。
6.已知集合且,
求实数m的取值范围。
思考.考察下列集合,说出集合C与集合A,B之间的关系:
(1),;
6. 并集的定义:
一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A与集合B的并集(union set)。记作:A∪B(读作:“A并B”),即
用Venn图表示:
这样,在问题(1)(2)中,集合A,B的并集是C,即= C
说明:定义中要注意“所有”和“或”这两个条件。
讨论:A∪B与集合A、B有什么特殊的关系?
A∪A= , A∪Ф= , A∪B B∪A
A∪B=A , A∪B=B .
巩固练习(口答):
①.A={3,5,6,8},B={4,5,7,8},则A∪B= ;
②.设A={锐角三角形},B={钝角三角形},则A∪B= ;
③.A={x|x>3},B={x|x<6},则A∪B= 。
7. 交集的定义:
一般地,由属于集合A且属于集合B的所有元素组成的集合,叫作集合A、B的交集(intersection set),记作A∩B(读“A交B”)即:
A∩B={x|x∈A,且x∈B}
用Venn图表示:(阴影部分即为A与B的交集)
常见的五种交集的情况:
讨论:A∩B与A、B、B∩A的关系?
A∩A= A∩Ф= A∩B B∩A
A∩B=A A∩B=B,
巩固练习(口答):
①.A={3,5,6,8},B={4,5,7,8},则A∩B= ;
②.A={等腰三角形},B={直角三角形},则A∩B= ;
③.A={x|x>3},B={x|x<6},则A∩B= 。
1.(课本例5)设集合,求A∪B.
变式:A={x|-5≤x≤8}
2.课本P11练习1,2,3
3.已知集合
是否存在实数m,同时满足?
8. 全集的定义:
一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),记作U,是相对于所研究问题而言的一个相对概念。
9. 补集的定义:
对于一个集合A,由全集U中不属于集合A的所有元素组成的集合,叫作集合A相对于全集U的补集(complementary set),记作:,
读作:“A在U中的补集”,即
用Venn图表示:(阴影部分即为A在全集U中的补集)
讨论:集合A与之间有什么关系?→借助Venn图分析
巩固练习(口答):
①.U={2,3,4},A={4,3},B=φ,则= ,= ;
②.设U={x|x<8,且x∈N},A={x|(x-2)(x-4)(x-5)=0},则= ;
1.设集,求,.
2.课本P11练习4
3.设全集,求,
,。
4.设全集U为R,,若
,求。
课下作业:
1.设求,
2、已知,,若,求
3. 设全集,求实数a的值。
4.设全集若,求、.